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of Order 

Two approaches to improve the convergence of the multipole series were considered: 
1) an increase in the order of the expansion; 2) decomposition of the molecular charge 
density into smaller distributions. New decompositions of the molecular electronic 
density and a computational procedure to generate high-order moments are presented. 
The accuracy and timing of test calculations on the H20 �9 �9 �9 H20 system are given 
and suggestions are made for optimizing the choice of an expansion for more general 
systems. 
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1. Introduction 

A comparison of the time ( > 10 sec) required for a direct calculation of the Coulomb 
interaction, 

f P(Xl)P(X2) / IX 1 -- X 2 ldxldx2,  (la) 

P(Xl), P(X2): the charge densities, ( lb)  

for the near H-F wave function of H20 given by Diercksen and Kraemer [1, 2] with that 
of a multipole expansion of the extremely high 14th order (I .3 sec) shows the clear 
advantage of the latter. This advantage is further enhanced by the fact that the multi- 
pole expansion can be easily extended to include induced interactions [3 ,4] .  Although 
wave functions for interacting molecules do overlap and the infinite multipole series 
for the energy of interaction of two charge distributions converges if and only if the 
distributions are non-overlapping, finite expansions for the energies corresponding to 
the densities they define yield excellent approximations even at intermolecular distances 
corresponding to those of condensed phases. Pack, Wang and Rein [5] have provided 
support for this conclusion by comparison of the evaluation of the integral (1) with the 
results of a multipole expansion of the integrand. 

Two approaches have reduced significantly the computational work required by such 
expansions and thus made applications feasible which the slow convergence of these 

* We express our appreciation to the National Institutes of Health which supported this work under 
Grant 1 R01 GM 20436-02. 
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finite approximations at such distances using earlier techniques prohibited. First, Rein 
[6] has published calculations in which significant improvement in the accuracy of the 
expansions including only fourth-order terms was obtained. He divided the molecular 
density p(x) into a sum of densities assigned to each atomic center: 

/2 C 

p(x) = ~ d(k, x), (2a) 
g = l  

no: number of centers, (2b) 

d(k, x): density function for the kth center. (2c) 

The results of the following two calculations were compared: 1) an expansion in p(x) 
about a single center x ~ in terms of what he called "molecular moments"; 2) an 
expansion of each d(k,  x) about the position of the nucleus x k in terms of what he 
called "atomic moments". An improved accuracy in the calculations truncated at 
fourth-order terms using the multicenter expansion was reported. A second approach 
has sharply reduced the computational effort required for higher-order approximations 
through development of more efficient algorithms and programs (Mezei and Campbell 
[7]; Campbell and Mezei [8]). 

The purpose of this note is to report: 1) results which lead to a more effective choice 
of decomposition of the densities in Eq. (2), cf. Sect. 2.2; 2) a test of the efficiency of 
the calculation as a function of the position of a single center, cf. Sect. 2.2; 3) results 
which provide a better basis for a combination of the two aforementioned approaches 
to reduce the computation required, cf. Sects. 3.1,3.2; 4) the availability of tested 
programs for: a) generation of moments (Appendices A and B), and b) translation of 
the expansion center, rotation of the coordinate axes and/or contraction of the moments 
belonging to any set of centers to one of the centers (Appendix C). All tests were 
made on the interaction of two water molecules. 

2. Definition of the Multipole Moments and of the Density Splits 

2.1. Definition o f  the Moments 

The moments of a charge distribution with respect to any center x ~ over a domain D 
are defined as: 

3 

M(p, x ~ n, {ei}) = f • (x k - x~ (3a) 
D k = l  

(ei}: the set of orthonormal basis vectors, (3b) 

n = (nl, n2, n3), ni a non-negative integer. (3c) 

The charge density is assumed to be given by: 
n o 

p(x) = 2 Fri~b](x), (4a) 
i = 1  

n b 
~i(X) = ~ ciiB](x),  ( 4 b )  

j = l  
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Let 

no : number of molecular orbitals, 

rib: number of basis functions, 

Fri: fractional occupancy of the ith MO, 0 ~< Fri ~< 2, 

Bj(x): jth basis function, 

cij: constants. 

(4c) 

(4d) 

(4e) 

(40 

(4g) 

~(k,x) : ~ ~jBi(x). 
By(x) ~ C(k) 

Two basic alternatives for the assignment of two-center densities to the d(k, x)  have 
been used. 1) The first was a convenient generalization of the Mulliken split used by 
Rein [6]. It allows the assignment of the overlap density to a third center, which will 
be shown to have great advantages. It is described as follows: 

Pl 0 FIe n C 

d ( k , x ) =  2 Vr i [~] (k ,x )+ ~ Z 
i = 1  p = q + l  q = l  

S(k,p,  q)~i(P, x)~i(q,  x)], (7a) 

S(k, p, q): parameters defining the split of the density, (7b) 

n c 

Y S(k, p, q) = 2. (7c) 
k = l  

2) The second alternative was investigated to determine whether a decrease in the range 
of the overlap density despite the concomitant increase in the asymmetry of the d(k, x) 
could increase the accuracy of lower-order approximations. It can be described as 
follows. Consider a plane perpendicular to 

u = (r(q) - r(p))/Ir(q) - r(p) l (8a) 

and passing through the point 

ro(p, q) = (w(q)r(p) + w(p)r(q))/(w(p) + w(q)), (8b) 

w(p),  (p = 1 . . . .  , nc): positive input parameters. (8c) 

(6a) 

(6b) 

(6c) 

ad : {x~, x{, x~): center of the ]th basis function. (5a) 

The set (x ]} is contracted into a 1-1 sequence 

r(i), i = 1 . . . . .  no. (5b) 

Each r must be rewritten as a sum over linear combinations of subsets of the basis 
functions which have the same centers: 

C(k) - {B~(x) !xJ = ~(k)), 

I~ c 

r ~ ~i(k ,x) ,  
k = l  
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Let 

if u �9 (x - to(P, q)) < 0 

otherwise. 
(8d) 

Then 

nO ~C '~C 

d(k,x)= ~ Fri[~](k,x)+ ~. ~, X(P,q,x)tki(p,x)tki(q,x)]. (9) 
i=1 p = l  q = l  

2.2. Specification o f  the Multipole Expansions Used 

Results from two choices made for splits of type (1) will be discussed. The first, proposed 
by Mulliken and considered by Rein [6] is defined by 

S(k,p, q) = 6ok + 6qk. (10) 

It will be called the Mulliken split. The second removes all overlap density from a selected 
set of centers and will be called a "very extreme split". It has an immediate advantage 
based on th e following consideration. For any of the conventional basis sets, after all 
overlap densities have been excluded what remains in d(k, x) is a linear combination of 
functions of the form: 

f(]x[)H(x),  ( l la )  

H(x): a surface spherical harmonic of order ~< 2n (in the sense defined by Hobson 
[9a]) about the center x k, (1 lb) 

n: the highest order of spherical harmonics involved in the functions of 
C(k). (1 lc) 

After integration over Ix[ this implies that the set is exactly represented by a sum of 
spherical harmonics of order ~< 2n [9b]. In our calculations using a very extreme split, 
all overlap densities have been transferred to the oxygen atom of the water molecule. 
This minimizes the number of interactions involved in the split calculations. 

The second split alternative will be called a "sharp split" and is defined by 

w(k) = 1, k = 1 . . . . .  nc, (12) 

i.e., the plane dividing the overlap density between any two centers p and q contains 
the midpoint d r ( p )  - r(q). 

Finally, for the case of the single center expansion, calculations for different choices 
of x ~ in the neighborhood of the O nucleus were made over distances ca. 10N of the 
O-O distance. These had no marked influence and all results referring to one-center 
expansion are for the oxygen nucleus as the x ~ 
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3. Comparison of the Different Multipole Techniques 

3.1. Accuracy as a Function o f  Multipole Order and Expansion Type 

The  l imi t i ng  value fo r  t he  e n e r g y  E fo r  a given o r i e n t a t i o n  w a s  e s t i m a t e d  as fo l lows :  

1) The  e x p a n s i o n  t y p e  p r e s u m e d  to  y ie ld  t he  grea tes t  a c c u r a c y  was  i n f e r r e d  f r o m  

i n s p e c t i o n  o f  the  i n c r e m e n t s  [E(n)  - E(n - 1)].  2)  E(n) fo r  t he  h ighe s t  o rder  (i .e. ,  n --- 10 

in th is  s t u d y )  fo r  th i s  t y p e  was  a d o p t e d  as t he  e s t i m a t e .  

Table 1. The error in the interaction energies E(n) of expansions of  different types in perpendicular 
orientations. 1) The distance of the oxygens, R(O-O) is in A. 2) The angle 0 is in degrees and is 
defined in Sect. 3.1.3) The entries in parentheses are the last relative increments I1 - [E(9)/E(10)] I 
for the type of expansion chosen for inferring an approximation to the limiting E (cf. Sect. 3.1). 
4) All other entries are the errors of  the particular approximation: I1 - E(n)/E(limit)l (cf. Sect. 3.1). 
5) The number after E is the corresponding power of  ten; thus, .13E - 1 = .013.6) All interactions 
of order n' < n are included in E(n) 

n 

Expansion Type 0 R(O-O) 4 6 8 10 

Molecular 0.0 3.0 . 1 3 E -  1 .15E - 1 .18E - 2 
Very extreme split 0.0 3.0 . 5 2 E -  2 . 4 5 E -  3 .13E - 3 
MuUiken split 0.0 3.0 . 5 7 E -  2 . 2 6 E -  1 . 1 9 E -  1 
Sharp split 0.0 3.0 . 2 5 E -  1 . l l E -  1 . 1 7 E -  3 

Molecular 60.0 3.0 .93E - 1 . 3 3 E -  1 .82E - 2 
Very extreme split 60.0 3.0 .50 /?-  1 . 4 6 E -  2 . 5 0 E -  3 
Mulliken split 60.0 3.0 .58E - 1 .23E - 1 . 6 7 E -  2 
Sharp split 60.0 3.0 . 6 8 E -  2 . l l E  - 1 .28E - 1 

Molecular 120.0 3.0 .14E + 1 .27E + 0 .24E + 0 
Very extreme split 120.0 3.0 .75E + 0 .39E - 1 .12E - 1 
Mulliken split 120.0 3.0 .70/? + 0 .76/? - 1 .35E + 0 
Sharp split 120.0 3.0 . 6 4 E -  1 .15E + 0 .15E + 0 

Molecular 180.0 3.0 .35E + 0 .19E + 0 .34E - 1 
Very extreme split 180.0 3.0 . 5 2 E -  3 .30/?-  1 . 2 7 E -  2 
Mulliken split 180.0 3.0 .10E + 0 . 6 9 E -  3 . 4 7 E -  1 
Sharp split 180.0 3.0 . 3 3 E -  1 .1BE - 1 .67E + 0 

Molecular 0.0 2.72 . 2 2 E -  1 . 2 2 E -  1 . 3 5 E -  2 
Very extreme split 0.0 2.72 . 1 0 E -  1 . 7 9 E -  3 . 1 4 E -  3 
Mulliken split 0.0 2.72 . 5 8 E -  3 . 5 1 E -  1 . 5 2 E -  1 

Molecular split 60.0 2.72 .12E+ 0 . 4 9 E -  1 . 1 5 E -  1 
Very extreme split 60.0 2.72 .69/s  1 .58E - 2 .96/? - 3 
Mulliken split 60.0 2.72 . 8 7 E -  1 . 4 2 E -  1 . 1 7 E -  1 

Molecular 120.0 2.72 .16E + 1 .80E - 1 .12E + 0 
Very extreme split 120.0 2.72 .31E + 0 .52E - 2 .60E - 2 
Mulliken split 120.0 2.72 .31E + 0 .48E - 1 .36E + 0 

Molecular 180.0 2.72 .63E + 0 .37E + 0 . 6 7 E -  1 
Very extreme split 180.0 2.72 . 3 6 E -  2 .62E - 1 .57E - 2 
Mulliken split 180.0 2.72 .43E - 1 .19E + 0 .28E + 0 

. 3 9 E -  3 
(.35E - 4) 
.84E - 2 
. 1 2 E -  1 

. 8 5 E -  3 
(.93E - 4) 
.18E - 2 
.70E - i 

. 7 7 E -  1 
(.28E - 2) 
.32E + 0 

8 4 E -  1 

94E - 2 
(.37E - 3) 
.17E + 0 
.83E + 0 

.79E - 3 
(.81E - 4) 

. 3 0 E -  1 

.19E - 2 
(A3E - 3) 
.62E - 2 

. 4 2 E -  1 
(.13E - 2) 
. l l E +  0 

. 3 5 E -  1 
(.58E - 3) 
. 7 6 E -  1 
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Two types of  orientations were considered. Type 1 (perpendicular): Let D and A denote 
donor and acceptor molecules, respectively. The donor HD is on the OB-OA line. Let 
bA, bD be the bond angle bisectors for A and D pointing toward the hydrogens.  Let u 
lie in the donor plane and be either of  the two normals to the Oo-OA line. The two 

molecular planes are perpendicular.  The angle 0 between b A and (OD -+ OA) is positive 
if  (bA ' u )  and (bD �9 u) are of  opposite sign. Type 2 (stacked): The O-O line is perpen- 
dicular to the two molecular planes and 7 is an angle between the bisector of  molecule 
1 and the projection of  the bisector of  molecule 2 on the plane of  the first. Representative 
results 1 are presented in Tables 1-2. 

Table 2. The error in the interaction energies E(n) of expansions of different types in stacked orienta- 
tions. 1) The angle ~' is in degrees and is defined in Sect. 3.1.2) For further explanation, see the 
legend of Table 1 

n 

Expansion Type 7 R(O-O) 4 6 8 10 

Molecular 0.0 3.0 .96E- 1 .25E - 1 .65E - 2 .12E - 2 
Very extreme split 0.0 3.0 .11E- 1 . l l E -  2 .23E- 3 .24E- 3 
Mulliken split 0.0 3.0 .19E- 1 .69E- 3 .69E- 3 .23E- 3 
Sharp split 0.0 3.0 .69E - 2 .56E - 3 .66E - 4 (.47E - 5) 

Molecular 180.0 3.0 .34E+ 1 .13E+ 1 .55E+ 0 .23E + 0 
Very extreme split 180.0 3.0 .23E + 0 .84E- 1 .20E- 1 .46E- 3 
Mulliken split 180.0 3.0 .24E + 0 .18E- 1 .20E- 2 .37E - 2 
Sharp split 180.0 3.0 .82E- 1 .24E- 2 .27E- 2 (.24E - 2) 

The results of  Tables 1-2 show that:  1) in general the accuracy advantage of  the split 

decreases sharply with the accuracy sought and, therefore, with the order of  the 
approximation used; 2) in these calculations on small H-bonded molecules, the very 
extreme split gives the highest accuracy in orientations of  greatest interest and in all 
cases its accuracy is at least comparable to the best; 3) the Mulliken split gave signifi- 

cantly lower accuracy than the very extreme and was in many cases outperformed 
by the molecular expansion at higher orders; 4) the sharp split showed greater accuracy 

at orientations of  lesser interest. 

Finally, calculations at over 200 orientations and distances using the wave function of  
Popkie, Kistenmacher and Clementi [10] confirmed the general superiority of  the very 
extreme split over the molecular expansion. 

3.2. Time Requirements of  the Different Types of  Expansions 

Data on the time requirements for different types of  expansions are presented in Table 3. 
Although the number of  multipole series calculations required for the total energy is 

1 The wave function was provided by Diercksen and Kraemer in a private communication involving 
slight variations in the basis set published in [1]. 



Efficient Multipole Expansion 233 

Table 3. Time requirements (sec) for computing the interaction energy with different types of 
expansions 

Expans~n Type 4 6 8 10 12 14 

Molecular 0.097 0.133 0.229 0.430 0.664 1.29 
Any split, other than the very 

extreme 0.148 0.407 1.10 2.70 5.1 a 12. a 
Very extreme split 0.098 0.179 0.376 0.908 1.53 3.07 

a Estimated. 

proportional to (N1N2) , the product of  the number of  distributions used for the two 
interacting systems, inspection of  the times listed in Table 3 shows that at lower orders 
there is a substantial contribution from initialization common to all centers. Further- 
more, a comparison of  times for the very extreme and other splits in Table 3 shows the 
marked savings which arise from the vanishing of  higher order moments for centers 
devoid of  overlap density. 

4. Considerations for the Choice of  Expansion Type and Order 

The following points should be considered in the selection of  the compromise between 
an increase in the order of  the multipole series and an increase in the number of  
distributions into which the molecular density is partitioned. 1) It is reasonable to 
extrapolate from our calculations on H 2 0 . .  �9 H20 to the case where interactions 
between AHx of one molecule with atom B of  another (R-AH x . . .  B-R')  make 
significant contributions to the total energy. In such a case, it is expected that a very 
extreme split with a transfer of  all overlap densities involving the H's to A will yield a 
similar accuracy advantage to that found in water. It seems plausible that for 
( R - A - C . . .  B-R')  it would likewise be advantageous to use a very extreme split with 
all overlap involving C transferred to A. 2) The results on stacked orientations suggest 
that for less directly interacting centers the very extreme split will probably lose its 
accuracy advantage in comparison with other splits. 3) Although the additional 
accuracy gained by a split is in general expected to increase with the size of  interacting 
systems, the aforementioned asymptotic increase in time makes it imperative to group 
the nuclei into subsets with a common expansion center. 4) The very extreme split 
with its advantage of  limiting harmonic types can be applied usefully only to centers 
within a "reactive" group. For other groups another split type is required. One can 
expect that there will be a maximum number of  groups from the standpoint of accuracy 
as well as from time economy on the basis of  the following two observations: 
(a) there were certain orientations for which either the Mulliken or the sharp split gave 
results which were no better than those of  a single center expansion, and others for 
which they were worse; (b) in most cases these splits were more accurate at lower 
orders only. 5) For the small system tested, at orientations and distances of greatest 
physical interest an increase of  between two and four orders yielded an accuracy for the 
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one-center expansion approximately equal to that of the best multipole decomposition, 
i.e., the very extreme split. 6) A split moment program is somewhat more complex. 
7) The use of split moments in calculations on crystals may sacrifice symmetry elements 
that might be present for the appropriate choice of a single molecular center. 

Appendix A 

Specification o f  the Moment Computation Program 

The CDC 6600 Fortran program MOMENTS, available on request, computes the 
moments of a charge distribution, subject to the following restrictions: 

1) An input parameter, Nmax, determines that the moments will be given for all orders 
N = n I -t- n2 + n3 such that 

N~< Nma x ~< 14 (A1) 

2) Each basis function B/(x) is assumed to be a contracted normalized linear combination 
of normalized Gaussians of the form: 

�9 3 . ] nj 
l 1% #)rap j / xJ - N~bqexp [ - G l x  - I], (A2a) 

L~m) p = 1 ] q = 

{m Imk is a non-negative integer and ma + mz + m3 ~< 3}, (A2b) 

a~, bq j, o~: parameters; Ni, NqJ: normalization constants ,  (AZc) 

ni: number of Gaussians contracted in the jth basis function. (A2d) 

3) The input syntax is compatible with the POLYATOM system of programs [12]. 

Appendix B 

Algorithms, Storage and Timing for the Moment Calculation 

1) Substitution of the expression for the density, Eqs. (4, 5, A2) into the definition of 
the moments, Eq. (3), yields linear combinations of product of integrals that are of the 
following form: 

f (X -- Xk)  n k ( x  -- Xp) n p ( x  -- Xq) nq exp [ -% (x - Xp) 2 ] exp [--% (x -- xq) z] dx 
- ~  ( m )  

The product of the two Gaussians is replaced by a single Gaussian through the standard 
transformation of perfect squares: 

--O~p (X -- Xp) 2 --  O~t(X -- Xq) 2 = [--O~pO~7(X p -- Xq)2 /O1pq] --0!pq(X -- Xpq) 2, (B2a) 

Xpq = (O~pXp + O~TXq)/O~pq ; O.pq = % + % .  (B2b) 

Since, in general, for each pair of basis functions the maximum possible number of 
different moments is much greater than the maximum number of coefficients in the 
product harmonic, it is advantageous to express the integral (B1) as a linear combination 
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of integrals of  the following form: 

(x - xk)mkexp [--%q(X -- Xpq)2]dx, (B3a) 

xk: center coordinate for moment  expansion. (B3b) 

This integral can be evaluated either by applying the transformation ~ = x - xk or the 
transformation rl' = x - X p q ,  leading to integrals of  the form: 

f r~ rnkexp [ - % q ( p  - ( X p q  - xk) )  2 ] dT/, (B4) 
- - o o  

or  

(~ '  - ( x k  - Xpq ) )  mkexp L - % q ~  I a ~  , (BS) 

respectively. The integral (B4) can be evaluated recursively, 

I x L  + 2 e x p [ - ~ ( x  - r)2]dx = [(L + 1)/2~] x r e x p [ - ~ ( x  - r ) 2 l d x  

o ~  

+ r I xL + l e x p [ - ~ ( x  - r)2]dx'  (B6) 

while the integral (B5) can be evaluated through the binomial expansion. Since the 
number of operations is less for the recursion whenever rn k >~ 5 and test calculations 
on a wide range of  parameters have shown no propagation of  round-off errors, the form 
(B4) was used throughout the program. 

2) The calculation for the split by perpendicular planes is done similarly, with the 
following two modifications: a) for each pair of  centers a rotation of  coordinates is 
needed to make u of  Eq. (8a) one of the basis vectors; b) the recursion for the coordinate 
x corresponding to u is modified as follows. The first step evaluated the incomplete 
error function and is continued as: 

B B 

X L + 2 exp [ - a  (x - r) 2 ] dx  = [(L + I)/2a] j xL exp [ - a  (x - f )2  ] dx  
A A 

B 

+ r ~ x L + l exp [ - a ( x  - r )2]dx  - B L + %xp [ - a ( B  - r)2 ]/2c~ 

A 

+ A z, + lexp  [ - a ( A  - r) 2 ] /2a .  (B7) 

3) The coefficients of  the polynomials in three variables as well as the different moments  
are stored in linear arrays in: a) blocks of  increasing N = n 1 + n2 + n3; b) within each N o d  
of N in blocks of  increasing n3; c) within each block of n3 in blocks of  increasing n2. 
The address of  the coefficient belonging to the term with exponents (nl, n2, n3) is: 

[ N ( N ( N +  3) + 2)/6] + [ n 3 ( 2 N -  n3 + 3)/2] +n2 + 1. (B8) 
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Note that the term N(N(N + 3) + 2)/6 gives the number o f  coefficients in a polynomial  
in Xl, x~, x3 of  order (N - 1). 

4) The times required to compute various moments  from wave functions o f  different 
size are given in Table 4. 

Table 4. Time requirements (sec) of the moment computation using different basis sets 

Nmax 
No. of Basis No, of 

Molecule Functions Gaussians 3 5 6 10 14 

H20 a [111 14 33 
H20 b [11] 14 33 
H2OC [11] 14 33 
H20 c [1, 2] 35 56 
H20d [1, 2] 3S 56 
H20e [1, 2] 35 56 
(H20)2 c [1, 2] 70 112 
H~O c [10] 29 56 
H20 d [10] 29 56 

24 

14 163 
9 105 

16 173 
49 243 
32 ~155 

105 371 
1247 
256 594 

313 

a Molecular (H centered); b Molecular (O centered); c Mulliken split; d Very extreme 
split; e Sharp split. 

Appendix C 

Transformation o f  the Moments 

A tested CDC 6600 Fortran program called MOMTRSF is also available on request. 
It is compatible in its input with the program MOMENTS and can perform the following 
transformations: 1) Contraction of  the moments.  Consider any set of  centers x k, 

1 ~< k ~< nc, and the corresponding sets of  moments {Mk(p k, x g, n, {ei} ) [ nt + n2 + 
n 3 ~< Nmax}. Choose x ~ =x~ 1 <~ ]<~ n e. The moments  (M(p,xO, n, (ei})} o f  

n$ 
p= ~ pk 

k= l  

are generated. 2) Translation of the center of expansion. The set of moments 
{M(p, x ~ n, (ei})} is converted to the set of  moments  {M'(p, x ~ n, {ei})} referring to 
another center x ~ 3) Rotat ion o f  the coordinate system around the center o f  expansion. 
The set of  moments  {M(p, x ~ n, {ei})} is converted to the set o f  moments 
(/14" (p, x ~ n, {e~.})}, where {e;} is the set of  orthonormal basis vectors of  the rotated 
system. 
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